182 research outputs found

    Determining the fraction of reddened quasars in COSMOS with multiple selection techniques from X-ray to radio wavelengths

    Full text link
    The sub-population of quasars reddened by intrinsic or intervening clouds of dust are known to be underrepresented in optical quasar surveys. By defining a complete parent sample of the brightest and spatially unresolved quasars in the COSMOS field, we quantify to which extent this sub-population is fundamental to our understanding of the true population of quasars. By using the available multiwavelength data of various surveys in the COSMOS field, we built a parent sample of 33 quasars brighter than J=20J=20 mag, identified by reliable X-ray to radio wavelength selection techniques. Spectroscopic follow-up with the NOT/ALFOSC was carried out for four candidate quasars that had not been targeted previously to obtain a 100\% redshift completeness of the sample. The population of high AVA_V quasars (HAQs), a specific sub-population of quasars selected from optical/near-infrared photometry, is found to contribute 21%5+921\%^{+9}_{-5} of the parent sample. The full population of bright spatially unresolved quasars represented by our parent sample consists of 39%8+939\%^{+9}_{-8} reddened quasars defined by having AV>0.1A_V>0.1, and 21%5+921\%^{+9}_{-5} of the sample having E(BV)>0.1E(B-V)>0.1 assuming the extinction curve of the Small Magellanic Cloud. We show that the HAQ selection works well for selecting reddened quasars, but some are missed because their optical spectra are too blue to pass the grg-r color cut in the HAQ selection. This is either due to a low degree of dust reddening or anomalous spectra. We find that the fraction of quasars with contributing light from the host galaxy is most dominant at z1z \lesssim 1. At higher redshifts the population of spatially unresolved quasars selected by our parent sample is found to be representative of the full population at J<20J<20 mag. This work quantifies the bias against reddened quasars in studies that are based solely on optical surveys.Comment: 22 pages, 10 figures, accepted for publication in A&A. The ArXiv abstract has been shortened for it to be printabl

    Spitzer bright, UltraVISTA faint sources in COSMOS: the contribution to the overall population of massive galaxies at z=3-7

    Get PDF
    We have analysed a sample of 574 Spitzer 4.5 micron-selected galaxies with [4.5]24 (AB) over the UltraVISTA ultra-deep COSMOS field. Our aim is to investigate whether these mid-IR bright, near-IR faint sources contribute significantly to the overall population of massive galaxies at redshifts z>=3. By performing a spectral energy distribution (SED) analysis using up to 30 photometric bands, we have determined that the redshift distribution of our sample peaks at redshifts z~2.5-3.0, and ~32% of the galaxies lie at z>=3. We have studied the contribution of these sources to the galaxy stellar mass function (GSMF) at high redshifts. We found that the [4.5]24 galaxies produce a negligible change to the GSMF previously determined for Ks_auto<24 sources at 3=<z<4, but their contribution is more important at 4=~50% of the galaxies with stellar masses Mst>~6 x 10^10 Msun. We also constrained the GSMF at the highest-mass end (Mst>~2 x 10^11 Msun) at z>=5. From their presence at 5=<z<6, and virtual absence at higher redshifts, we can pinpoint quite precisely the moment of appearance of the first most massive galaxies as taking place in the ~0.2 Gyr of elapsed time between z~6 and z~5. Alternatively, if very massive galaxies existed earlier in cosmic time, they should have been significantly dust-obscured to lie beyond the detection limits of current, large-area, deep near-IR surveys.Comment: 18 pages, 15 figures, 4 tables. Updated to match version in press at the Ap

    Star formation in galaxies at z~4-5 from the SMUVS survey: a clear starburst/main-sequence bimodality for Halpha emitters on the SFR-M* plane

    Get PDF
    We study a large galaxy sample from the Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) to search for sources with enhanced 3.6 micron fluxes indicative of strong Halpha emission at z=3.9-4.9. We find that the percentage of "Halpha excess" sources reaches 37-40% for galaxies with stellar masses log10(M*/Msun) ~ 9-10, and decreases to <20% at log10(M*/Msun) ~ 10.7. At higher stellar masses, however, the trend reverses, although this is likely due to AGN contamination. We derive star formation rates (SFR) and specific SFR (sSFR) from the inferred Halpha equivalent widths (EW) of our "Halpha excess" galaxies. We show, for the first time, that the "Halpha excess" galaxies clearly have a bimodal distribution on the SFR-M* plane: they lie on the main sequence of star formation (with log10(sSFR/yr^{-1})<-8.05) or in a starburst cloud (with log10(sSFR/yr^{-1}) >-7.60). The latter contains ~15% of all the objects in our sample and accounts for >50% of the cosmic SFR density at z=3.9-4.9, for which we derive a robust lower limit of 0.066 Msun yr^{-1} Mpc^{-3}. Finally, we identify an unusual >50sigma overdensity of z=3.9-4.9 galaxies within a 0.20 x 0.20 sq. arcmin region. We conclude that the SMUVS unique combination of area and depth at mid-IR wavelengths provides an unprecedented level of statistics and dynamic range which are fundamental to reveal new aspects of galaxy evolution in the young Universe.Comment: 18 pages, 11 figures, 1 table. Re-submitted to the ApJ, after addressing referee report. Main changes with respect to v1: a new section and a new appendix have been added to investigate further the origin and robustness of the sSFR bimodality. No conclusion change

    When two become one: an apparent QSO pair turns out to be a single quasar

    Full text link
    We report on our serendipitous discovery that the objects Q 01323-4037 and Q 0132-4037, listed in the V\'eron-Cetty & V\'eron catalog (2006) as two different quasars, are actually a quasar and a star. We briefly discuss the origin of the misidentification, and provide a refined measurement of the quasar redshift.Comment: 3 pages, 2 figures; accepted for publication in A&

    Multi-Wavelength Studies of the Optically Dark Gamma-Ray Burst 001025A

    Full text link
    We identify the fading X-ray afterglow of GRB 001025A from XMM-Newton observations obtained 1.9-2.3 days, 2 years, and 2.5 years after the burst. The non-detection of an optical counterpart to an upper limit of R=25.5, 1.20 days after the burst, makes GRB 001025A a ``dark'' burst. Based on the X-ray afterglow spectral properties of GRB 001025A, we argue that some bursts appear optically dark because their afterglow is faint and their cooling frequency is close to the X-ray band. This interpretation is applicable to several of the few other dark bursts where the X-ray spectral index has been measured. The X-ray afterglow flux of GRB 001025A is an order of magnitude lower than for typical long-duration gamma-ray bursts. The spectrum of the X-ray afterglow can be fitted with an absorbed synchrotron emission model, an absorbed thermal plasma model, or a combination thereof. For the latter, an extrapolation to optical wavelengths can be reconciled with the R-band upper limit on the afterglow, without invoking any optical circumburst absorption, provided the cooling frequency is close to the X-ray band. Alternatively, if the X-ray afterglow is due to synchrotron emission only, seven magnitudes of extinction in the observed R-band is required to meet the R-band upper limit, making GRB 001025A much more obscured than bursts with detected optical afterglows. Based on the column density of X-ray absorbing circumburst matter, an SMC gas-to-dust ratio is insufficient to produce this amount of extinction. The X-ray tail of the prompt emission enters a steep temporal decay excluding that the tail of the prompt emission is the onset of the afterglow (abridged).Comment: 32 pages, 8 figures, ApJ in pres

    Internal kinematics of spiral galaxies in distant clusters. Part II. Observations and data analysis

    Full text link
    We have conducted an observing campaign with FORS at the ESO-VLT to explore the kinematical properties of spiral galaxies in distant galaxy clusters. Our main goal is to analyse transformation- and interaction processes of disk galaxies within the special environment of clusters as compared to the hierarchical evolution of galaxies in the field. Spatially resolved MOS-spectra have been obtained for seven galaxy clusters at 0.3<z<0.6 to measure rotation velocities of cluster members. For three of the clusters, Cl0303+17, Cl0413-65, and MS1008-12, for which we presented results including a TF-diagram in Ziegler et al. 2003, we describe here in detail the observations and data analysis. Each of them was observed with two setups of the standard FORS MOS-unit.With typical exposure times of >2 hours we reach an S/N>5 in the emission lines appropriate for the deduction of the galaxies' internal rotation velocities from [OII], Hbeta, or [OIII] profiles. Preselection of targets was done on the basis of available redshifts as well as from photometric and morphological information gathered from own observations, archive data, and from the literature. Emphasis was laid on the definition of suitable setups to avoid the typical restrictions of the standard MOS unit for this kind of observations. In total we assembled spectra of 116 objects of which 50 turned out to be cluster members. Position velocity diagrams, finding charts as well as tables with photometric, spectral, and structural parameters of individual galaxies are presented.Comment: 18 pages, 6 figures, accepted for publication in Astronomy and Astrophysics. A version with full resolution figures can be downloaded from http://www.uni-sw.gwdg.de/~vwgroup/publications.htm

    The Spitzer  Matching Survey of the UltraVISTA Ultra-deep Stripes (SMUVS):The Evolution of Dusty and Nondusty Galaxies with Stellar Mass at z = 2–6

    Get PDF
    The Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes (SMUVS) has obtained the largest ultradeep Spitzer maps to date in a single field of the sky. We considered the sample of about 66,000 SMUVS sources at z = 2–6 to investigate the evolution of dusty and nondusty galaxies with stellar mass through the analysis of the galaxy stellar mass function (GSMF), extending previous analyses about one decade in stellar mass and up to z = 6. We further divide our nondusty galaxy sample with rest-frame optical colors to isolate red quiescent (“passive”) galaxies. At each redshift, we identify a characteristic stellar mass in the GSMF above which dusty galaxies dominate, or are at least as important as nondusty galaxies. Below that stellar mass, nondusty galaxies compose about 80% of all sources, at all redshifts except at z = 4–5. The percentage of dusty galaxies at z = 4–5 is unusually high: 30%–40% for {M}* ={10}9{--}{10}10.5 {M}ȯ and &gt;80% at M * &gt; 1011 M ⊙, which indicates that dust obscuration is of major importance in this cosmic period. The overall percentage of massive ({log}}10({M}* /{M}ȯ )&gt; 10.6) galaxies that are quiescent increases with decreasing redshift, reaching &gt;30% at z ∼ 2. Instead, the quiescent percentage among intermediate-mass galaxies (with {log}}10({M}* /{M}ȯ )=9.7{--}10.6) stays roughly constant at a ∼10% level. Our results indicate that massive and intermediate-mass galaxies clearly have different evolutionary paths in the young universe and are consistent with the scenario of galaxy downsizing

    Probing the galaxy-halo connection in UltraVISTA to z∼2

    Get PDF
    We use percent-level precision photometric redshifts in the UltraVISTA-DR1 near-infrared survey to investigate the changing relationship between galaxy stellar mass and the dark matter haloes hosting them to z∼2. We achieve this by measuring the clustering properties and abundances of a series of volume-limited galaxy samples selected by stellar mass and star formation activity. We interpret these results in the framework of a phenomenological halo model and numerical simulations. Our measurements span a uniquely large range in stellar mass and redshift and reach below the characteristic stellar mass to z∼2. Our results are: (1) at fixed redshift and scale, clustering amplitude depends monotonically on sample stellar mass threshold; (2) at fixed angular scale, the projected clustering amplitude decreases with redshift but the comoving correlation length remains constant; (3) characteristic halo masses and galaxy bias increase with increasing median stellar mass of the sample; (4) the slope of these relationships is modified in lower mass haloes; (5) concerning the passive galaxy population, characteristic halo masses are consistent with a simply less-abundant version of the full galaxy sample, but at lower redshifts the fraction of satellite galaxies in the passive population is very different from the full galaxy sample; (6) finally, we find that the ratio between the characteristic halo mass and median stellar mass at each redshift bin reaches a peak at log (Mh/M⊙)∼12.2 and the position of this peak remains constant out to z∼2. The behaviour of the full and passively evolving galaxy samples can be understood qualitatively by considering the slow evolution of the characteristic stellar mass in the redshift range probed by our surve

    Parallelizing Deadlock Resolution in Symbolic Synthesis of Distributed Programs

    Full text link
    Previous work has shown that there are two major complexity barriers in the synthesis of fault-tolerant distributed programs: (1) generation of fault-span, the set of states reachable in the presence of faults, and (2) resolving deadlock states, from where the program has no outgoing transitions. Of these, the former closely resembles with model checking and, hence, techniques for efficient verification are directly applicable to it. Hence, we focus on expediting the latter with the use of multi-core technology. We present two approaches for parallelization by considering different design choices. The first approach is based on the computation of equivalence classes of program transitions (called group computation) that are needed due to the issue of distribution (i.e., inability of processes to atomically read and write all program variables). We show that in most cases the speedup of this approach is close to the ideal speedup and in some cases it is superlinear. The second approach uses traditional technique of partitioning deadlock states among multiple threads. However, our experiments show that the speedup for this approach is small. Consequently, our analysis demonstrates that a simple approach of parallelizing the group computation is likely to be the effective method for using multi-core computing in the context of deadlock resolution

    Probing the galaxy-halo connection in UltraVISTA to z2z\sim2

    Get PDF
    We use percent-level precision photometric redshifts in the UltraVISTA-DR1 near-infrared survey to investigate the changing relationship be- tween galaxy stellar mass and the dark matter haloes hosting them to z2z\sim2. We achieve this by measuring the clustering properties and abundances of a series of volume-limited galaxy samples selected by stellar mass and star-formation activity. We interpret these results in the framework of a phenomenological halo model and numerical simulations. Our measurements span a uniquely large range in stellar mass and redshift and reach below the characteristic stellar mass to z2z\sim2. Our results are: 1. At fixed redshift and scale, clustering amplitude depends monotonically on sample stellar mass threshold; 2. At fixed angular scale, the projected clustering amplitude decreases with redshift but the co-moving correlation length remains constant; 3. Characteristic halo masses and galaxy bias increase with increasing median stellar mass of the sample; 4. The slope of these relationships is modified in lower mass haloes; 5. Concerning the passive galaxy population, characteristic halo masses are consistent with a simply less-abundant version of the full galaxy sample, but at lower redshifts the fraction of satellite galaxies in the passive population is very different from the full galaxy sample; 6. Finally we find that the ratio between the characteristic halo mass and median stellar mass at each redshift bin reaches a peak at log(Mh/M)12.2{\log(M_h/M_\odot)}\sim12.2 and the position of this peak remains constant out to z2z\sim2. The behaviour of the full and passively evolving galaxy samples can be understood qualitatively by considering the slow evolution of the characteristic stellar mass in the redshift range probed by our survey.Comment: 18 pages, 14 figures; submitted to MNRAS. Comments are welcom
    corecore